Quantum Fourier Transform

From Qugate
Jump to: navigation, search

QFT|x\rangle = \frac{1}{\sqrt{N}}\sum_{y=0}^{N-1} e^{\frac{2\pi i}{N} xy} |y\rangle

Let \omega = e^\frac{2\pi i}{N}, then QFT|x\rangle = \frac{1}{\sqrt{N}}\sum_{y=0}^{N-1} \omega^{xy} |y\rangle.

Note that \sum_{n=0}^{N-1} a^n = \begin{cases}N \text{ for } a = 1\\ \frac{a^{N} - 1}{a - 1} \text{ for } a \not= 1 \end{cases}

Note that \omega^k = 1 iff. N|k,

Thus if N|k, \sum_{n=0}^{N-1} \omega^{kn} = N. and if N\not|k, \sum_{n=0}^{N-1} \omega^{kn} = \frac{\omega^{kN} - 1}{\omega^k - 1} = 0.

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox